Physics – Grade 10 Unit One – Electricity Chapter 2 – Potential Difference

Prepared & Presented by: Mr. Mohamad Seif

Think then Solve

Five identical lamps connected to a battery delivering a constant voltage $V_{PN} = 12V$.

An oscilloscope is connected across the terminals of the battery as shown.

We observe on the screen a luminous line displaced by 4 divisions.

- 1. Indicate with justification whether this line is displaced upward or downward.
- 2. What would we observe if the sweeping is off?

Be Smart ACADEMY

- 3. Determine the vertical sensitivity adjusted.
- 4. Calculate the potential difference across each lamp.

five identical lamps; $V_{PN} = 12V$; y = 4div

1. Indicate with justification whether this line is displaced upward or downward.

The luminous line moves upward, because the phase is connected to (+) of the battery and the com is connected to (-) of the battery.

five identical lamps; $V_{PN} = 12V$; y = 4div

2. What would we observe if the sweeping is off?

When we turn off the sweeping, we observe a luminous spot instead of luminous line at the same position.

3. Determine the vertical sensitivity adjusted.

$$V_{PN} = S_V \times y$$
 $S_V = \frac{V_{PN}}{y} = \frac{12}{4}EVY$

$$S_V = 3V/div$$

five identical lamps; $V_{PN} = 12V$; y = 4div

4. Calculate the potential difference across each lamp.

$$V_{\rm PN}=V_{\rm AD}=V_{\rm MF}=12V$$
 (law of uniqueness of voltage in parallel)

 $V_{AD} = V_{AB} + V_{BC} + V_{CD}$ But the lamps are identical & in series then:

$$V_{AB} = V_{BC} = V_{CD}$$

$V_{AD} = V_{AB} + V_{BC} + V_{CD}$ But the lamps are identical then:

$$V_{AB} = V_{BC} = V_{CD}$$

$$V_{AD} = V_{AB} + V_{AB} + V_{AB}$$

$$V_{AD} = 3V_{AB}$$

$$V_{AB} = \frac{V_{AD}}{3} = \frac{12}{3}$$

$$V_{AB} = V_{BC} = V_{CD} = 4V$$

$$V_{MF} = V_{ME} + V_{EF}$$

But since L_4 and L_5 are identical then:

$$V_{ME} = V_{EF}$$

$$V_{MF} = V_{ME} + V_{ME}$$

$$V_{MF}=2V_{ME}$$

$$V_{ME} = \frac{V_{MF}}{2} = \frac{12}{2}$$

$$V_{ME} = V_{EF} = 6V$$

Think then Solve

Six lamps are connected to across a battery delivers a constant voltage V_{PN} = 24V as shown in the adjacent figure.

Given: $V_{PA} = 8V$; $V_{ND} = -4V$; and V_{AC}

= 6V.

1. Calculate the electric potential differences: V_{AD} and V_{CD} .

2. C is taken as a reference potential. Determine the electric potentials V_C ; V_A and V_P .

$$V_{PN} = 24V$$
; $V_{PA} = 8V$; $V_{ND} = -4V$; and $V_{AC} = 6V$.

1. Calculate the electric potential differences: $V_{\rm AD}$ and $V_{\rm CD}$.

$$V_{PN} = V_{PA} + V_{AD} + V_{DN}$$
 $24V = 8V + V_{AD} + 4V$

$$24V - 12V = V_{AD} \qquad \qquad V_{AD} = 12V$$

$$V_{PN} = V_{PA} + V_{AC} + V_{CD} + V_{DN}$$
 $24V = 8V + 6V + V_{CD} + 4V$
 $24 = 18V + V_{CD}$

$$V_{CD} = 6V$$

$$V_{PN} = 24V$$
; $V_{PA} = 8V$; $V_{ND} = -4V$; and $V_{AC} = 6V$.

- 2. C is taken as a reference potential. Determine the electric potentials V_A and V_P .
- C is reference potential, then: $V_C = 0V$

$$V_{AC} = V_A - V_C$$

$$6V = V_A - 0$$

$$V_{AB} = V_A - V_C$$

$$V_{AB} = V_A - V_C$$

$$V_{AB} = V_A - V_C$$

$$8V = V_P - 6V \quad \blacktriangleright \quad V_P = 8V + 6V \quad \blacktriangleright \quad V_P = 14V$$

Be Smart ACADEMY

- 3. An oscilloscope is connected across the two terminals B and C. We observe on the screen a luminous line displaced upward by 3 div. Given: $S_V = 1V/\text{div}$.
 - a) Show on the figure the connection of the oscilloscope.
 - b) Calculate V_{BC} then deduce V_{AB} .

- 3. An oscilloscope is connected across the two terminals B and C.
- We observe on the screen a luminous line displaced upward by 3 div. Given: $S_V = 1V/\text{div}$.
 - a) Show on the figure the connection of the oscilloscope.

$$y = 3 div$$
; $S_V = 1V/div$.

b) Calculate V_{BC} then deduce V_{AR}

$$\begin{aligned} V_{BC} &= S_V \times y & V_{BC} &= 1v/div \times 3v \\ V_{BC} &= 3V \end{aligned}$$

$$\mathbf{V_{PN}} = \mathbf{V_{PA}} + \mathbf{V_{AB}} + \mathbf{V_{BC}} + \mathbf{V_{CD}} + \mathbf{V_{DN}}$$

$$24V = 8V + V_{AB} + 3V + 6V + 4V$$

$$24V = 21 + V_{AB}$$
 $V_{AB} = 3V$

$$V_{AB} = 3V$$

During a lab session, a group of students wanted to measure the voltage of some electrical components.

For this aim, they used a voltmeter and an oscilloscope. The electric circuit is represented in the adjacent circuit.

1. A voltmeter is connected across the terminals of the dry cell; it reads 9V.

a) Redraw the circuit showing the connection L_1 of the voltmeter.

b) The voltmeter has the ranges [250V, 50V, 20V, 10V; 5V]. Specify the convenient scale.

- Be Smart ACADEMY
- 1. A voltmeter is connected across the terminals of the dry cell; it reads 9V.
 - a) Redraw the circuit showing the connection of the voltmeter.

The Com must be connected to negative pole of the battery

b) The voltmeter has the ranges [250V, 50V, 20V, 10V; 5V]. Specify the convenient scale. L_1

The convenient scale should be slightly greater than the measured voltage.

The chosen scale is 10V

A student connects the oscilloscope to measure the voltage U_{ED} . The following oscillogram is obtained. Given: $S_V = 1v/div$

- 1. Calculate the voltage U_{ED} .
- 2. A student regulates the vertical sensitivity such that the straight line displaces down one more division. Calculate the new vertical sensitivity.

- 3. Calculate the voltage U_{PA} across the lamp L_1 .
- 4. Knowing that the lamps L_2 and L_3 are identical, determine U_{AB} and U_{BC}

Given: $S_V = 1v/div$

1. Calculate the voltage U_{ED} .

$$\mathbf{U}_{\mathbf{ED}} = \mathbf{S}_{\mathbf{V}} \times \mathbf{y}$$

$$U_{ED} = 1 \text{v/div} \times (-2 \text{div})$$

$$\mathbf{U_{ED}} = -2\mathbf{v} \mathbf{\Delta} \mathbf{C} \mathbf{\Delta} \mathbf{D} \mathbf{F}$$

2. A student regulates the vertical sensitivity such that the straight line displaces down one more division. Calculate the new vertical sensitivity.

$$U_{ED} = S'_{V} \times \mathbf{y}$$
 $-2V = S'_{V} \times (-3)$

$$S'_{V} = \frac{-2V}{-3} \begin{array}{c} S_{CADE} \\ ACADE \end{array}$$
 $S'_{V} = 0.67V$

Be Smart ACADEMY

3. Calculate the voltage U_{PA} across the lamp L_1 .

$$V_{PN} = V_{PA} + V_{AD} + V_{DE} + V_{EC} + V_{CN}$$

$$9V = V_{PA} + 0 + 2V + 0 + 0$$

$$9V - 2V = V_{PA}$$

$$V_{PA} = 7V$$

4. Knowing that the lamps L_2 and L_3 are identical,

determine U_{AB} and U_{BC}

$$\boldsymbol{V_{PN}} = \boldsymbol{V_{PA}} + \boldsymbol{V_{AB}} + \boldsymbol{V_{BC}} + \boldsymbol{V_{CN}}$$

But L_2 and L_3 are identical: $V_{AB} = V_{BC}$

$$\boldsymbol{V_{PN}} = \boldsymbol{V_{PA}} + \boldsymbol{V_{AB}} + \boldsymbol{V_{AB}} + \boldsymbol{V_{CN}}$$

$$9V = 7V + 2V_{AB} + 0$$

$$2\mathbf{V} = 2V_{AB} \quad | \mathbf{V}_{AB} = \frac{2}{2} = 1\mathbf{V} \quad | \mathbf{V}_{AB} = V_{BC} = 1\mathbf{V}$$

$$V_{AB} = \frac{2}{2} = 1V$$

$$V_{AB} = V_{BC} = 1V$$

